Extensions 1→N→G→Q→1 with N=C2 and Q=C23×Dic3

Direct product G=N×Q with N=C2 and Q=C23×Dic3
dρLabelID
Dic3×C24192Dic3xC2^4192,1528


Non-split extensions G=N.Q with N=C2 and Q=C23×Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C23×Dic3) = C23×C3⋊C8central extension (φ=1)192C2.1(C2^3xDic3)192,1339
C2.2(C23×Dic3) = Dic3×C22×C4central extension (φ=1)192C2.2(C2^3xDic3)192,1341
C2.3(C23×Dic3) = C22×C4.Dic3central stem extension (φ=1)96C2.3(C2^3xDic3)192,1340
C2.4(C23×Dic3) = C22×C4⋊Dic3central stem extension (φ=1)192C2.4(C2^3xDic3)192,1344
C2.5(C23×Dic3) = C2×C23.26D6central stem extension (φ=1)96C2.5(C2^3xDic3)192,1345
C2.6(C23×Dic3) = C2×D4×Dic3central stem extension (φ=1)96C2.6(C2^3xDic3)192,1354
C2.7(C23×Dic3) = C24.49D6central stem extension (φ=1)48C2.7(C2^3xDic3)192,1357
C2.8(C23×Dic3) = C2×Q8×Dic3central stem extension (φ=1)192C2.8(C2^3xDic3)192,1370
C2.9(C23×Dic3) = C6.422- 1+4central stem extension (φ=1)96C2.9(C2^3xDic3)192,1371
C2.10(C23×Dic3) = C2×D4.Dic3central stem extension (φ=1)96C2.10(C2^3xDic3)192,1377
C2.11(C23×Dic3) = C12.76C24central stem extension (φ=1)484C2.11(C2^3xDic3)192,1378
C2.12(C23×Dic3) = Dic3×C4○D4central stem extension (φ=1)96C2.12(C2^3xDic3)192,1385
C2.13(C23×Dic3) = C6.1442+ 1+4central stem extension (φ=1)96C2.13(C2^3xDic3)192,1386
C2.14(C23×Dic3) = C22×C6.D4central stem extension (φ=1)96C2.14(C2^3xDic3)192,1398

׿
×
𝔽